arXiv Analytics

Sign in

arXiv:1705.06241 [math.AG]AbstractReferencesReviewsResources

Lifting the Cartier transform of Ogus-Vologodsky modulo $p^n$

Daxin Xu

Published 2017-05-17Version 1

Let $W$ be the ring of the Witt vectors of a perfect field of characteristic $p$, $\mathfrak{X}$ a smooth formal scheme over $W$, $\mathfrak{X}'$ the base change of $\mathfrak{X}$ by the Frobenius morphism of $W$, $\mathfrak{X}_{2}'$ the reduction modulo $p^{2}$ of $\mathfrak{X}'$ and $X$ the special fiber of $\mathfrak{X}$. We lift the Cartier transform of Ogus-Vologodsky defined by $\mathfrak{X}_{2}'$ modulo $p^{n}$. More precisely, we construct a functor from the category of $p^{n}$-torsion $\mathscr{O}_{\mathfrak{X}'}$-modules with integrable $p$-connection to the category of $p^{n}$-torsion $\mathscr{O}_{\mathfrak{X}}$-modules with integrable connection, each subject to suitable nilpotence conditions. Our construction is based on Oyama's reformulation of the Cartier transform of Ogus-Vologodsky in characteristic $p$. If there exists a lifting $F:\mathfrak{X}\to \mathfrak{X}'$ of the relative Frobenius morphism of $X$, our functor is compatible with a functor constructed by Shiho from $F$. As an application, we give a new interpretation of Faltings' relative Fontaine modules and of the computation of their cohomology.

Related articles: Most relevant | Search more
arXiv:math/0611452 [math.AG] (Published 2006-11-15)
Unirationality of certain supersingular $K3$ surfaces in characteristic 5
arXiv:0811.1756 [math.AG] (Published 2008-11-11, updated 2008-12-09)
Orthogonal bundles over curves in characteristic two
arXiv:1303.5905 [math.AG] (Published 2013-03-24)
A characterization of toric varieties in characteristic p