arXiv Analytics

Sign in

arXiv:1705.05703 [math.CA]AbstractReferencesReviewsResources

Convexity and monotonicity for the elliptic integrals of the first kind and applications

Zhen-Hang Yang, Jingfeng Tian

Published 2017-05-16Version 1

The elliptic integral and its various generalizations are playing very important and basic role in different branches of modern mathematics. It is well known that they cannot be represented by the elementary transcendental functions. Therefore, there is a need for sharp computable bounds for the family of integrals. In this paper, by virtue of two new tools, we study monotonicity and convexity of certain combinations of the complete elliptic integrals of the first kind, and obtain new sharp bounds and inequalities for them. In particular, we prove that the function $\mathcal{K}\left( \sqrt{% x}\right) /\ln \left( c/\sqrt{1-x}\right) $ is concave on $\left( 0,1\right) $ if and only if $c=e^{4/3}$, where $\mathcal{K}$ denotes the complete elliptic integrals of the first kind.

Related articles: Most relevant | Search more
arXiv:0909.0230 [math.CA] (Published 2009-09-01, updated 2009-10-04)
Mittag-Leffler Functions and Their Applications
arXiv:math/0304345 [math.CA] (Published 2003-04-22)
A Converse of the Jensen Inequality for Convex Mappings of Several Variables and Applications
arXiv:math/0010162 [math.CA] (Published 2000-10-16)
A new A_n extension of Ramanujan's 1-psi-1 summation with applications to multilateral A_n series