arXiv Analytics

Sign in

arXiv:1705.03393 [math.RT]AbstractReferencesReviewsResources

Simple Witt modules that are finitely generated over the cartan subalgebra

Xiangqian Guo, Genqiang Liu, Rencai Lu, Kaiming Zhao

Published 2017-05-09Version 1

Let $d\ge1$ be an integer, $W_d$ and $\mathcal{K}_d$ be the Witt algebra and the weyl algebra over the Laurent polynomial algebra $A_d=\mathbb{C} [x_1^{\pm1}, x_2^{\pm1}, ..., x_d^{\pm1}]$, respectively. For any $\mathfrak{gl}_d$-module $M$ and any admissible module $P$ over the extended Witt algebra $\widetilde W_d$, we define a $W_d$-module structure on the tensor product $P\otimes M$. We prove in this paper that any simple $W_d$-module that is finitely generated over the cartan subalgebra is a quotient module of the $W_d$-module $P \otimes M$ for a finite dimensional simple $\mathfrak{gl}_d$-module $M$ and a simple $\mathcal{K}_d$-module $P$ that are finitely generated over the cartan subalgebra. We also characterize all simple $\mathcal{K}_d$-modules and all simple admissible $\widetilde W_d$-modules that are finitely generated over the cartan subalgebra.

Related articles: Most relevant | Search more
arXiv:2411.19936 [math.RT] (Published 2024-11-29)
Wonderful Compactification of a Cartan Subalgebra of a Semisimple Lie Algebra
arXiv:1401.1120 [math.RT] (Published 2014-01-06, updated 2014-06-04)
$\W_n^+$- and $W_n$-module structures on $U(h)$
arXiv:0804.3289 [math.RT] (Published 2008-04-21)
Principal basis in Cartan subalgebra