arXiv:1704.02604 [math.DS]AbstractReferencesReviewsResources
$β$-transformation on an interval with hole
Published 2017-04-09Version 1
Let $T_{\beta}$ be the expanding map of $[0,1]$ defined by $T_{\beta}(x) = \beta x\ \text{mod 1}$, where $\beta$ is an integer atleast 2. Given $0\leq a<b\leq 1$, let $\mathcal{W}_{\beta}(a,b)=\{x\in [0,1]\ \vert \ T_{\beta}^nx\notin (a,b), \ n\geq 0\}$ be the maximal $T$-invariant subset of $[0,1]\setminus (a,b)$. We characterize the intervals $(a,b)$ for which the Hausdorff dimension of $\mathcal{W}_{\beta}(a,b)$ is positive.
Comments: 12 pages
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:0912.2210 [math.DS] (Published 2009-12-11)
On Measure Invariance for a 2-valued Transformation
arXiv:2004.07298 [math.DS] (Published 2020-04-15)
Mixing properties of generalized $T, T^{-1}$ transformations
arXiv:1602.03518 [math.DS] (Published 2016-02-10)
Generalized $β$-transformations and the entropy of unimodal maps