arXiv:1703.10662 [math.AP]AbstractReferencesReviewsResources
The unsaturated flow in porous media with dynamic capillary pressure
Published 2017-03-30Version 1
In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [12] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed third-order term by combining the information from the capillary pressure with obtained a priori estimates on the saturation.