arXiv:1703.07862 [math.CA]AbstractReferencesReviewsResources
Atomic decomposition and interpolation via the complex method for mixed norm Bergman spaces on tube domains over symmetric cones
David Bekolle, Jocelyn Gonessa, Cyrille Nana
Published 2017-03-22Version 1
Starting from an adapted Whitney decomposition of tube domains in $\C^n$ over irreducible symmetric cones of $\R^n,$ we prove an atomic decomposition theorem in mixed norm weighted Bergman spaces on these domains. We also characterize the interpolation space via the complex method between two mixed norm weighted Bergman spaces.
Comments: 27 pages
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:1703.07859 [math.CA] (Published 2017-03-22)
Bergman-Lorentz spaces on tube domains over symmetric cones
arXiv:1709.03909 [math.CA] (Published 2017-09-12)
Off-diagonal estimates of some Bergman-type operators on tube domains over symmetric cones
arXiv:1601.04899 [math.CA] (Published 2016-01-19)
The Duren-Carleson theorem in tube domains over symmetric cones