arXiv Analytics

Sign in

arXiv:1703.07211 [math.PR]AbstractReferencesReviewsResources

Disorder chaos in some diluted spin glass models

Wei-Kuo Chen, Dmitry Panchenko

Published 2017-03-21Version 1

We prove disorder chaos at zero temperature for three types of diluted models with large connectivity parameter: $K$-spin antiferromagnetic Ising model for even $K\geq 2$, $K$-spin spin glass model for even $K\geq 2$, and random $K$-sat model for all $K\geq 2$. We show that modifying even a small proportion of clauses results in near maximizers of the original and modified Hamiltonians being nearly orthogonal to each other with high probability. We use a standard technique of approximating diluted models by appropriate fully connected models and then apply disorder chaos results in this setting, which include both previously known results as well as new examples motivated by the random $K$-sat model.

Related articles: Most relevant | Search more
arXiv:1608.06256 [math.PR] (Published 2016-08-22)
On the $K$-sat model with large number of clauses
arXiv:1406.4702 [math.PR] (Published 2014-06-18, updated 2015-02-25)
Structure of finite-RSB asymptotic Gibbs measures in the diluted spin glass models
arXiv:math/0405357 [math.PR] (Published 2004-05-18)
Bounds for diluted mean-fields spin glass models