arXiv Analytics

Sign in

arXiv:1703.06700 [cs.LG]AbstractReferencesReviewsResources

Independence clustering (without a matrix)

Daniil Ryabko

Published 2017-03-20Version 1

The independence clustering problem is considered in the following formulation: given a set $S$ of random variables, it is required to find the finest partitioning $\{U_1,\dots,U_k\}$ of $S$ into clusters such that the clusters $U_1,\dots,U_k$ are mutually independent. Since mutual independence is the target, pairwise similarity measurements are of no use, and thus traditional clustering algorithms are inapplicable. The distribution of the random variables in $S$ is, in general, unknown, but a sample is available. Thus, the problem is cast in terms of time series. Two forms of sampling are considered: i.i.d.\ and stationary time series, with the main emphasis being on the latter, more general, case. A consistent, computationally tractable algorithm for each of the settings is proposed, and a number of open directions for further research are outlined.

Related articles: Most relevant | Search more
arXiv:2101.10037 [cs.LG] (Published 2021-01-25)
Optimizing Convergence for Iterative Learning of ARIMA for Stationary Time Series
arXiv:2211.10856 [cs.LG] (Published 2022-11-20)
Diffeomorphic Information Neural Estimation
arXiv:2205.12239 [cs.LG] (Published 2022-05-24)
Gacs-Korner Common Information Variational Autoencoder