arXiv Analytics

Sign in

arXiv:1702.08809 [math.AP]AbstractReferencesReviewsResources

Asymptotic behaviour for operators of Grushin type: invariant measure and singular perturbations

Paola Mannucci, Claudio Marchi, Nicoletta Tchou

Published 2017-02-28Version 1

This paper concerns singular perturbation problems where the dynamics of the fast variable evolve in the whole space according to an operator whose infinitesimal generator is formed by a Grushin type second order part and a Ornstein-Uhlenbeck first order part. We prove that the dynamics of the fast variables admits an invariant measure and that the associated ergodic problem has a viscosity solution which is also regular and with logarithmic growth at infinity. These properties play a crucial role in the main theorem which establishes that the value functions of the starting perturbation problems converge to the solution of an effective problem whose operator and initial datum are given in terms of the associated invariant measure.

Related articles: Most relevant | Search more
arXiv:1004.5297 [math.AP] (Published 2010-04-29)
Asymptotic behaviour for a diffusion equation governed by nonlocal interactions
arXiv:1007.2284 [math.AP] (Published 2010-07-14, updated 2011-09-18)
A porous medium equation involving the infinity-Laplacian. Viscosity solutions and asymptotic behaviour
arXiv:0907.0885 [math.AP] (Published 2009-07-05)
Asymptotic behaviour of global solutions to a model of cell invasion