arXiv Analytics

Sign in

arXiv:1702.08671 [math.FA]AbstractReferencesReviewsResources

On The Absolute Value of The Product and the Sum of Linear Operators

Mohammed Hichem Mortad

Published 2017-02-28Version 1

Let $A,B\in B(H)$. In the present paper, we establish simple and interesting facts on when we have $|A||B|=|B||A|$, $|AB|=|A||B|$, $|A\pm B|\leq |A|+|B|$, $||A|-|B||\leq |A\pm B|$ and $\||A|-|B|\|\leq \|A\pm B\|$, where $|\cdot|$ denotes the absolute value (or modulus) of an operator. The results give some other interesting consequences.

Comments: 11 pages
Categories: math.FA
Subjects: 47A63, 47A62, 47B15, 47B20
Related articles: Most relevant | Search more
arXiv:1711.00521 [math.FA] (Published 2017-11-01)
Maximality of Linear Operators
arXiv:2411.17654 [math.FA] (Published 2024-11-26)
Testing compactness of linear operators
arXiv:1806.05443 [math.FA] (Published 2018-06-14)
The absolute values and cover projections for a class of operator matrices involving idempotents