arXiv Analytics

Sign in

arXiv:1702.07570 [math.RT]AbstractReferencesReviewsResources

Quivers with relations for symmetrizable Cartan matrices IV: Crystal graphs and semicanonical functions

Christof Geiß, Bernard Leclerc, Jan Schröer

Published 2017-02-24Version 1

We generalize Lusztig's nilpotent varieties, and Kashiwara and Saito's geometric construction of crystal graphs from the symmetric to the symmetrizable case. We also construct semicanonical functions in the convolution algebras of generalized preprojective algebras. Conjecturally these functions yield semicanonical bases of the enveloping algebras of the positive part of symmetrizable Kac-Moody algebras.

Related articles: Most relevant | Search more
arXiv:1704.06438 [math.RT] (Published 2017-04-21)
Quivers with relations for symmetrizable Cartan matrices V. Caldero-Chapoton formula
arXiv:1502.01565 [math.RT] (Published 2015-02-05)
Quivers with relations for symmetrizable Cartan matrices II : Convolution algebras
arXiv:1803.11398 [math.RT] (Published 2018-03-30)
Quivers with relations for symmetrizable Cartan matrices and algebraic Lie theory