arXiv Analytics

Sign in

arXiv:1702.05714 [math.FA]AbstractReferencesReviewsResources

Continuity properties for Born-Jordan operators with symbols in Hörmander classes and modulation spaces

Maurice de Gosson, Joachim Toft

Published 2017-02-19Version 1

We show that the Weyl symbol of a Born-Jordan operator is in the same class as the Born-Jordan symbol, when H\"ormander symbols and certain types of modulation spaces are used as symbol classes. We use these properties to carry over continuity and Schatten-von Neumann properties to the Born-Jordan calculus.

Related articles: Most relevant | Search more
arXiv:1107.3344 [math.FA] (Published 2011-07-18, updated 2012-09-01)
Abstract composition laws and their modulation spaces
arXiv:1110.2681 [math.FA] (Published 2011-10-12, updated 2012-12-10)
Embeddings of $α$-modulation spaces
arXiv:2108.12106 [math.FA] (Published 2021-08-27)
Sharp embedding between Besov-Triebel-Sobolev spaces and modulation spaces