arXiv:1702.03130 [math.PR]AbstractReferencesReviewsResources
Note on A. Barbour's paper on Stein's method for diffusion approximations
Mikolaj J. Kasprzak, Andrew B. Duncan, Sebastian J. Vollmer
Published 2017-02-10Version 1
In (Barbour, 1990) foundations for diffusion approximation via Stein's method are laid. This paper has been cited more than 130 times and is a cornerstone in the area of Stein's method. A semigroup argument is used therein to solve a Stein equation for Gaussian diffusion approximation. We prove that, contrary to the claim in (Barbour, 1990), the semigroup considered therein is not strongly continuous on the Banach space of continuous, real-valued functions on D[0,1] growing slower than a cubic, equipped with an appropriate norm. We also provide a proof of the exact formulation of the solution to the Stein equation of interest, which does not require the aforementioned strong continuity. This shows that the main results of (Barbour, 1990) hold true.