arXiv:1702.00965 [math-ph]AbstractReferencesReviewsResources
Asymptotic Eigenfunctions for a class of Difference Operators
Markus Klein, Elke Rosenberger
Published 2017-02-03Version 1
We analyze a general class of difference operators $H_\varepsilon = T_\varepsilon + V_\varepsilon$ on $\ell^2(\varepsilon \mathbb{Z}^d)$, where $V_\varepsilon$ is a one-well potential and $\varepsilon$ is a small parameter. We construct formal asymptotic expansions of WKB-type for eigenfunctions associated with the low lying eigenvalues of $H_\varepsilon$. These are obtained from eigenfunctions or quasimodes for the operator $H_\varepsilon$, acting on $L^2(\mathbb{R}^d)$, via restriction to the lattice $\varepsilon\mathbb{Z}^d$.
Journal: Asymptotic Analysis 73, p. 1-36 (2011)
Keywords: difference operators, asymptotic eigenfunctions, construct formal asymptotic expansions, one-well potential, small parameter
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1706.06357 [math-ph] (Published 2017-06-20)
Harmonic Approximation of Difference Operators
arXiv:1411.3527 [math-ph] (Published 2014-11-13)
Finite-dimensional representations of difference operators, and the identification of remarkable matrices
arXiv:math-ph/0604021 (Published 2006-04-10)
Nonclassical Approximate Symmetries of Evolution Equations with a Small Parameter