arXiv:1701.04321 [math.CO]AbstractReferencesReviewsResources
Proof of an entropy conjecture of Leighton and Moitra
Hüseyin Acan, Pat Devlin, Jeff Kahn
Published 2017-01-16Version 1
We prove the following conjecture of Leighton and Moitra. Let $T$ be a tournament on $[n]$ and $S_n$ the set of permutations of $[n]$. For an arc $uv$ of $T$, let $A_{uv}=\{\sigma \in S_n \, : \, \sigma(u)<\sigma(v) \}$. $\textbf{Theorem.}$ For a fixed $\varepsilon>0$, if $\mathbb{P}$ is a probability distribution on $S_n$ such that $\mathbb{P}(A_{uv})>1/2+\varepsilon$ for every arc $uv$ of $T$, then the binary entropy of $\mathbb{P}$ is at most $(1-\vartheta_{\varepsilon})\log_2 n!$ for some (fixed) positive $\vartheta_\varepsilon$.
Comments: 9 pages
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2004.03662 [math.CO] (Published 2020-04-07)
More Absent-Minded Passengers
arXiv:2308.04284 [math.CO] (Published 2023-08-08)
A Littlewood-Offord kind of problem in $\mathbb{Z}_p$ and $Γ$-sequenceability
arXiv:2001.08931 [math.CO] (Published 2020-01-24)
Distribution of missing differences in diffsets