arXiv Analytics

Sign in

arXiv:1701.03193 [math.CO]AbstractReferencesReviewsResources

Partially metric association schemes with a multiplicity three

Edwin R. van Dam, Jack H. Koolen, Jongyook Park

Published 2017-01-12Version 1

An association scheme is called partially metric if it has a connected relation whose distance-two relation is also a relation of the scheme. In this paper we determine the symmetric partially metric association schemes with a multiplicity three. Besides the association schemes related to regular complete $4$-partite graphs, we obtain the association schemes related to the Platonic solids, the bipartite double scheme of the dodecahedron, and three association schemes that are related to well-known $2$-arc-transitive covers of the cube: the M\"{o}bius-Kantor graph, the Nauru graph, and the Foster graph F048A. In order to obtain this result, we also determine the symmetric association schemes with a multiplicity three and a connected relation with valency three. Moreover, we construct an infinite family of cubic arc-transitive $2$-walk-regular graphs with an eigenvalue with multiplicity three that give rise to non-commutative association schemes with a symmetric relation of valency three and an eigenvalue with multiplicity three.

Related articles: Most relevant | Search more
arXiv:2009.05343 [math.CO] (Published 2020-09-11)
On symmetric association schemes and associated quotient-polynomial graphs
arXiv:2301.08106 [math.CO] (Published 2023-01-19)
Integer eigenvalues of $n$-Queens' graph
arXiv:1710.00212 [math.CO] (Published 2017-09-30)
Spherical embeddings of symmetric association schemes in 3-dimensional Euclidean space