arXiv Analytics

Sign in

arXiv:1612.05049 [math.FA]AbstractReferencesReviewsResources

Complemented basic sequences in Frechet spaces with finite dimensional decomposition

Hasan Gül, Süleyman Onal

Published 2016-12-15Version 1

Let $E$ be a Frechet-Montel space and $(E_n)_{n \in \mathbb{N}}$ be a finite dimensional unconditional decomposition of $E$ with $\dim(E_n)\leq k$ for some fixed $k \in \mathbb{N}$ and for all $n \in \mathbb{N}$. Consider a sequence $(x_n)_{n \in \mathbb{N}}$ formed by taking an element $x_n$ from each $E_n$ for all $n \in \mathbb{N}$. Then $(x_n)_{n \in \mathbb{N}}$ has a subsequence which is complemented in $E$

Related articles: Most relevant | Search more
arXiv:2206.10337 [math.FA] (Published 2022-06-21)
Multifunctions admitting a measurable by seminorm selector in Frechet spaces
arXiv:math/9302204 [math.FA] (Published 1993-02-02)
The Complete Continuity Property and Finite Dimensional Decompositions
arXiv:math/0701324 [math.FA] (Published 2007-01-11)
Embedding into Banach spaces with finite dimensional decompositions