arXiv Analytics

Sign in

arXiv:1612.02178 [math.CO]AbstractReferencesReviewsResources

Improved upper bound on A(18,8)

Sven Polak

Published 2016-12-07Version 1

For nonnegative integers $n$ and $d$, let $A(n,d)$ be the maximum cardinality of a binary code of length $n$ and minimum distance at least $d$. We consider a slight sharpening of the semidefinite programming bound of Gijswijt, Mittelmann and Schrijver, and obtain that $A(18,8)\leq 70$.

Related articles: Most relevant | Search more
arXiv:1810.05066 [math.CO] (Published 2018-10-11)
Semidefinite programming bounds for Lee codes
arXiv:math/0404325 [math.CO] (Published 2004-04-19)
Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes
arXiv:1602.02531 [math.CO] (Published 2016-02-08)
Semidefinite bounds for nonbinary codes based on quadruples