arXiv:1612.02178 [math.CO]AbstractReferencesReviewsResources
Improved upper bound on A(18,8)
Published 2016-12-07Version 1
For nonnegative integers $n$ and $d$, let $A(n,d)$ be the maximum cardinality of a binary code of length $n$ and minimum distance at least $d$. We consider a slight sharpening of the semidefinite programming bound of Gijswijt, Mittelmann and Schrijver, and obtain that $A(18,8)\leq 70$.
Comments: 3 pages
Related articles: Most relevant | Search more
arXiv:1810.05066 [math.CO] (Published 2018-10-11)
Semidefinite programming bounds for Lee codes
arXiv:math/0404325 [math.CO] (Published 2004-04-19)
Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes
arXiv:1602.02531 [math.CO] (Published 2016-02-08)
Semidefinite bounds for nonbinary codes based on quadruples