arXiv:1611.09918 [astro-ph.HE]AbstractReferencesReviewsResources
Astrophysical constraints for Scalar-Tensor-Vector Gravity based on Kerr black holes and jets
Federico G. Lopez Armengol, Gustavo E. Romero
Published 2016-11-29Version 1
Scalar-Tensor-Vector Gravity (STVG), also referred as MOdified Gravity (MOG), is an alternative theory for the gravitational interaction. Its weak field approximation has been successfully used to described Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmological data, without the imposition of dark components. The theory was formulated by John Moffat in 2006. In this work we study the STVG-Kerr geometry, and the fields on it. In order to constrain free parameters of the theory, we model the black hole in the giant elliptical galaxy M87 and compare some predictions of STVG with observations. Further, we investigate the trajectories of particles in the relativistic jet of M87. We conclude that, according to STVG, gravity might play a significant role in the accelereation, collimation, and rotation of relativistic jets.