arXiv:1611.06237 [astro-ph.HE]AbstractReferencesReviewsResources
Dipole anisotropy in cosmic electrons and positrons: inspection on local sources
Silvia Manconi, Mattia Di Mauro, Fiorenza Donato
Published 2016-11-18Version 1
The cosmic electrons and positrons have been measured with unprecedented statistics up to several hundreds GeV, thus permitting to explore the role that close single sources can have in shaping the flux at different energies. In the present analysis, we consider electrons and positrons in cosmic rays to be produced by spallations of hadron fluxes with the interstellar medium, by a smooth Supernova Remnant (SNR) population, by all the ATNF catalog pulsars, and by few discrete, local SNRs. We test several source models on the $e^++e^-$ and $e^+$ AMS-02 flux data. For the configurations compatible with the data, we compute the dipole anisotropy in $e^++e^-$, $e^+$, $e^+/e^-$ from single sources. Our study includes a dedicated analysis to the Vela SNR. We show that Fermi-LAT present data on dipole anisotropy of $e^++e^-$ start to explore some of the models for the Vela SNR selected by AMS-02 flux data. We also investigate how the observed anisotropy could result from a combination of local sources. Our analysis shows that the search of anisotropy in the lepton fluxes up to TeV energies can be an interesting tool for the inspection of properties of close SNRs, complementary to the high precision flux data.