arXiv:1611.02469 [math.AC]AbstractReferencesReviewsResources
Unimodular Elements in Projective Modules and an analogue of a result of Mandal
Manoj K. Keshari, Md. Ali Zinna
Published 2016-11-08Version 1
Let $R$ be a Noetherian commutative ring of dimension $n$, $A=R[X_1,\cdots,X_m]$ be a polynomial ring over $R$ and $P$ be a projective $A[T]$-module of rank $n$. Assume that $P/TP$ and $P_f$ both contain a unimodular element for some monic polynomial $f(T)\in A[T]$. Then $P$ has a unimodular element.
Comments: To appear in J. of Commutative Algebra
Categories: math.AC
Related articles: Most relevant | Search more
A note on cancellation of projective modules
arXiv:1611.02471 [math.AC] (Published 2016-11-08)
Existence of unimodular elements in a projective module
arXiv:1112.0598 [math.AC] (Published 2011-12-02)
A generalization of the Pontryagin-Hill theorems to projective modules over Prüfer domains