arXiv Analytics

Sign in

arXiv:1610.08651 [math.NT]AbstractReferencesReviewsResources

On holomorphic Artin L-functions

Florin Nicolae

Published 2016-10-27Version 1

Let $K/\mathbb Q$ be a finite Galois extension, $s_0\in \mathbb C\setminus \{1\}$, ${\it Hol}(s_0)$ the semigroup of Artin L-functions holomorphic at $s_0$. If the Galois group is almost monomial then Artin's L-functions are holomorphic at $s_0$ if and only if $ {\it Hol}(s_0)$ is factorial. This holds also if $s_0$ is a zero of an irreducible L-function of dimension $\leq 2$, without any condition on the Galois group.

Related articles: Most relevant | Search more
arXiv:1810.08813 [math.NT] (Published 2018-10-20)
On the semigroup ring of holomorphic Artin L-functions
arXiv:0804.4153 [math.NT] (Published 2008-04-25)
The Other Group of as Galois Extension
arXiv:1805.07990 [math.NT] (Published 2018-05-21)
Independence of Artin L-functions