arXiv Analytics

Sign in

arXiv:1610.05861 [cs.CV]AbstractReferencesReviewsResources

StuffNet: Using 'Stuff' to Improve Object Detection

Samarth Brahmbhatt, Henrik I. Christensen, James Hays

Published 2016-10-19Version 1

We propose a Convolutional Neural Network (CNN) based algorithm - StuffNet - for object detection. In addition to the standard convolutional features trained for region proposal and object detection [31], StuffNet uses convolutional features trained for segmentation of objects and 'stuff' (amorphous categories such as ground and water). Through experiments on Pascal VOC 2010, we show the importance of features learnt from stuff segmentation for improving object detection performance. StuffNet improves performance from 18.8% mAP to 23.9% mAP for small objects. We also devise a method to train StuffNet on datasets that do not have stuff segmentation labels. Through experiments on Pascal VOC 2007 and 2012, we demonstrate the effectiveness of this method and show that StuffNet also significantly improves object detection performance on such datasets.

Related articles: Most relevant | Search more
arXiv:1511.05960 [cs.CV] (Published 2015-11-18)
ABC-CNN: An Attention Based Convolutional Neural Network for Visual Question Answering
arXiv:1609.02132 [cs.CV] (Published 2016-09-07)
UberNet: Training a `Universal' Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory
arXiv:1609.08965 [cs.CV] (Published 2016-09-28)
Graph Based Convolutional Neural Network