arXiv Analytics

Sign in

arXiv:1610.02356 [quant-ph]AbstractReferencesReviewsResources

Sensitivity, quantum limits, and quantum enhancement of noise spectroscopies

Vito Giovanni Lucivero, Aleksandra Dimic, Jia Kong, Ricardo Jiménez-Martínez, Morgan W. Mitchell

Published 2016-10-07Version 1

We study the fundamental limits of noise spectroscopy using estimation theory, Faraday rotation probing of an atomic spin system, and squeezed light. We find a simple and general expression for the Fisher information, which quantifies the sensitivity to spectral parameters such as resonance frequency and linewidth. For optically-detected spin noise spectroscopy, we find that shot noise imposes "local" standard quantum limits for any given probe power and atom number, and also "global" standard quantum limits when probe power and atom number are taken as free parameters. We confirm these estimation theory results using non-destructive Faraday rotation probing of hot Rb vapor, observing the predicted optima and finding good quantitative agreement with a first-principles calculation of the spin noise spectra. Finally, we show sensitivity beyond the atom- and photon-number-optimized global standard quantum limit using squeezed light.

Related articles: Most relevant | Search more
arXiv:1802.03845 [quant-ph] (Published 2018-02-12)
Improved sensitivity to magnetic fields by rotation of quantum sensors
A. A. Wood et al.
arXiv:1610.05190 [quant-ph] (Published 2016-10-17)
Quantum enhancement of randomness distribution
arXiv:2406.14750 [quant-ph] (Published 2024-06-20)
Quantum enhancement of spoofing detection with squeezed states of light