arXiv Analytics

Sign in

arXiv:1609.09018 [cs.CV]AbstractReferencesReviewsResources

Deep Architectures for Face Attributes

Tobi Baumgartner, Jack Culpepper

Published 2016-09-28Version 1

We train a deep convolutional neural network to perform identity classification using a new dataset of public figures annotated with age, gender, ethnicity and emotion labels, and then fine-tune it for attribute classification. An optimal sharing pattern of computational resources within this network is determined by experiment, requiring only 1 G flops to produce all predictions. Rather than fine-tune by relearning weights in one additional layer after the penultimate layer of the identity network, we try several different depths for each attribute. We find that prediction of age and emotion is improved by fine-tuning from earlier layers onward, presumably because deeper layers are progressively invariant to non-identity related changes in the input.

Comments: 11 pages, 2 figures, accepted in "Workshop on Facial Informatics in conjunction with ACCV '16"
Categories: cs.CV
Related articles: Most relevant | Search more
arXiv:1505.07675 [cs.CV] (Published 2015-05-28)
Improved Deep Convolutional Neural Network For Online Handwritten Chinese Character Recognition using Domain-Specific Knowledge
arXiv:1604.07904 [cs.CV] (Published 2016-04-27)
Image Colorization Using a Deep Convolutional Neural Network
arXiv:1605.01156 [cs.CV] (Published 2016-05-04)
Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets
Yunjie Liu et al.