arXiv Analytics

Sign in

arXiv:1609.08304 [math.FA]AbstractReferencesReviewsResources

An order theoretic characterization of spin factors

Bas Lemmens, Mark Roelands, Hent van Imhoff

Published 2016-09-27Version 1

The famous Koecher-Vinberg theorem characterizes the Euclidean Jordan algebras among the finite dimensional order unit spaces as the ones that have a symmetric cone. Recently Walsh gave an alternative characterization of the Euclidean Jordan algebras. He showed that the Euclidean Jordan algebras correspond to the finite dimensional order unit spaces $(V,C,u)$ for which there exists a bijective map $g\colon C^\circ\to C^\circ$ with the property that $g$ is antihomogeneous, i.e., $g(\lambda x) =\lambda^{-1}g(x)$ for all $\lambda>0$ and $x\in C^\circ$, and $g$ is an order-antimorphism, i.e., $x\leq_C y$ if and only if $g(y)\leq_C g(x)$. In this paper we make a first step towards extending this order theoretic characterization to infinite dimensional JB-algebras. We show that if $(V,C,u)$ is a complete order unit space with a strictly convex cone and $\dim V\geq 3$, then there exists a bijective antihomogeneous order-antimorphism $g\colon C^\circ\to C^\circ$ if and only if $(V,C,u)$ is a spin factor.

Related articles:
arXiv:2003.12377 [math.FA] (Published 2020-03-27)
Some log and weak majorization inequalities in Euclidean Jordan algebras
arXiv:1308.3332 [math.FA] (Published 2013-08-15, updated 2013-08-16)
A decomposition theorem for positive maps, and the projection onto a spin factor
arXiv:2003.12315 [math.FA] (Published 2020-03-27)
Adjoining an order unit to a strictly convex space