arXiv Analytics

Sign in

arXiv:1609.07579 [math-ph]AbstractReferencesReviewsResources

Intertwining operators for non self-adjoint Hamiltonians and bicoherent states

Fabio Bagarello

Published 2016-09-24Version 1

This paper is devoted to the construction of what we will call {\em exactly solvable models}, i.e. of quantum mechanical systems described by an Hamiltonian $H$ whose eigenvalues and eigenvectors can be explicitly constructed out of some {\em minimal ingredients}. In particular, motivated by PT-quantum mechanics, we will not insist on any self-adjointness feature of the Hamiltonians considered in our construction. We also introduce the so-called bicoherent states, we analyze some of their properties and we show how they can be used for quantizing a system. Some examples, both in finite and in infinite-dimensional Hilbert spaces, are discussed.

Related articles: Most relevant | Search more
arXiv:0711.0978 [math-ph] (Published 2007-11-06)
Construction of SU(3) irreps in canonical SO(3)-coupled bases
arXiv:math-ph/0004027 (Published 2000-04-21)
Connection Between Type A and E Factorizations and Construction of Satellite Algebras
arXiv:math-ph/0112060 (Published 2001-12-30, updated 2002-02-19)
Connection between type B (or C) and F factorizations and construction of algebras