arXiv Analytics

Sign in

arXiv:1609.03101 [math.CO]AbstractReferencesReviewsResources

Hamilton cycles in hypergraphs below the Dirac threshold

Frederik Garbe, Richard Mycroft

Published 2016-09-10Version 1

We establish a precise characterisation of $4$-uniform hypergraphs with minimum codegree close to $n/2$ which contain a Hamilton $2$-cycle. As an immediate corollary we identify the exact Dirac threshold for Hamilton $2$-cycles in $4$-uniform hypergraphs. Moreover, by derandomising the proof of our characterisation we provide a polynomial-time algorithm which, given a $4$-uniform hypergraph $H$ with minimum codegree close to $n/2$, either finds a Hamilton $2$-cycle in $H$ or provides a certificate that no such cycle exists. This surprising result stands in contrast to the graph setting, in which below the Dirac threshold it is NP-hard to determine if a graph is Hamiltonian. We also consider tight Hamilton cycles in $k$-uniform hypergraphs $H$ for $k \geq 3$, giving a series of reductions to show that it is NP-hard to determine whether a $k$-uniform hypergraph $H$ with minimum degree $\delta(H) \geq \frac{1}{2}|V(H)| - O(1)$ contains a tight Hamilton cycle. It is therefore unlikely that a similar characterisation can be obtained for tight Hamilton cycles.

Comments: 49 pages, 2 figures
Categories: math.CO
Subjects: 05C65, G.2.2
Related articles: Most relevant | Search more
arXiv:0707.2760 [math.CO] (Published 2007-07-18)
Spanning Trees with Many Leaves in Graphs without Diamonds and Blossoms
arXiv:1011.3882 [math.CO] (Published 2010-11-17)
Embedding a Forest in a Graph
arXiv:1406.5615 [math.CO] (Published 2014-06-21, updated 2014-07-11)
Triangulated map with minimum degree four is Hamiltonian