arXiv Analytics

Sign in

arXiv:1609.02528 [math.NT]AbstractReferencesReviewsResources

On the p-adic Birch and Swinnerton-Dyer conjecture for elliptic curves over number fields

Daniel Disegni

Published 2016-09-08Version 1

We formulate a multi-variable p-adic Birch and Swinnerton-Dyer conjecture for p-ordinary elliptic curves A over number fields K. It generalises the one-variable conjecture of Mazur-Tate-Teitelbaum, who studied the case K=Q and the phenomenon of exceptional zeros. We discuss old and new theoretical evidence towards our conjecture and in particular we fully prove it, under mild conditions, in the following situation: K is imaginary quadratic, A=E_K is the base-change to K of an elliptic curve over the rationals, and the rank of A is either 0 or 1. The proof is naturally divided into a few cases. Some of them are deduced from the purely cyclotomic case of elliptic curves over Q, which we obtain from a refinement of recent work of Venerucci alongside the results of Greenberg-Stevens, Perrin-Riou, and the author. The only genuinely multi-variable case (rank 1, two exceptional zeros, three partial derivatives) is newly established here. Its proof generalises to show that the `almost-anticyclotomic' case of our conjecture is a consequence of conjectures of Bertolini-Darmon on families of Heegner points, and of (partly conjectural) p-adic Gross--Zagier and Waldspurger formulas in families.

Comments: 28 pages, comments welcome
Categories: math.NT
Subjects: 11G40
Related articles: Most relevant | Search more
arXiv:1405.2643 [math.NT] (Published 2014-05-12, updated 2015-01-07)
On Nekovář's heights, exceptional zeros and a conjecture of Mazur-Tate-Teitelbaum
arXiv:0810.5760 [math.NT] (Published 2008-10-31)
Period and index of genus one curves over number fields
arXiv:1510.01915 [math.NT] (Published 2015-10-07)
On the exceptional zeros of $p$-non-ordinary $p$-adic $L$-functions and a conjecture of Perrin-Riou