arXiv Analytics

Sign in

arXiv:1608.08641 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Ground State thermodynamic and response properties of electron gas in a strong magnetic and electric field: Exact analytical solutions for a conventional semiconductor and for Graphene

Georgios Konstantinou, Konstantinos Moulopoulos

Published 2016-08-30Version 1

Consequences of an exceedingly strong electric field (E field) on the ground state energetics and transport properties of a 2D spinless electron gas in a perpendicular magnetic field (a Quantum Hall Effect (QHE) configuration) are investigated to all orders in the fields. For a conventional semiconductor, we find fractional values of the Hall conductivity and some magnetoelectric coefficients for certain values of E and B fields that do not result from interactions or impurities, but are a pure consequence of a strong enough in-plane E field. We also determine analytically the ground state energy, and response properties such as magnetization and polarization as functions of the electromagnetic field in the strong E field limit. In the case of Graphene, we obtain more complex behaviors leading to the possibility of irrational Hall values. The results are also qualitatively discussed in connection to various mechanisms for the QHE-breakdown.

Related articles: Most relevant | Search more
arXiv:1312.7635 [cond-mat.mes-hall] (Published 2013-12-30, updated 2014-08-18)
Indirect control of spin precession by electric field via spin-orbit coupling
arXiv:0711.3567 [cond-mat.mes-hall] (Published 2007-11-22)
Influence of surface-related strain and electric field on acceptor wave functions in Zincblende semiconductors
arXiv:1206.4761 [cond-mat.mes-hall] (Published 2012-06-21)
Magneto-electric equivalence and emergent electrodynamics in bilayer graphene