arXiv Analytics

Sign in

arXiv:1608.06680 [math.AP]AbstractReferencesReviewsResources

Dynamical Behavior for the Solutions of the Navier-Stokes Equation

Kuijie Li, Tohru Ozawa, Baoxiang Wang

Published 2016-08-24Version 1

We study the Cauchy problem for the incompressible Navier-Stokes equations (NS) in three and higher spatial dimensions: \begin{align} u_t -\Delta u+u\cdot \nabla u +\nabla p=0, \ \ {\rm div} u=0, \ \ u(0,x)= u_0(x). \label{NSa} \end{align} Leray and Giga obtained that for the weak and mild solutions $u$ of NS in $L^p(\mathbb{R}^d)$ which blow up at finite time $T>0$, respectively, one has that for $d <p \leq \infty$, $$ \|u(t)\|_p \gtrsim ( T-t )^{-(1-d/p)/2}, \ \ 0< t<T. $$ We will obtain the blowup profile and the concentration phenomena in $L^p(\mathbb{R}^d)$ with $d\leq p\leq \infty$ for the blowup mild solution. On the other hand, if the Fourier support has the form ${\rm supp} \ \widehat{u_0} \subset \{\xi\in \mathbb{R}^n: \xi_1\geq L \}$ and $\|u_0\|_{\infty} \ll L$ for some $L >0$, then \eqref{NSa} has a unique global solution $u\in C(\mathbb{R}_+, L^\infty)$. Finally, if the blowup rate is of type I: $$ \|u(t)\|_p \sim ( T-t )^{-(1-d/p)/2}, \ for \ 0< t<T<\infty, \ d<p<\infty $$ in 3 dimensional case, then we can obtain a minimal blowup solution $\Phi$ for which $$ \inf \{\limsup_{t \to T}(T-t)^{(1-3/p)/2}\|u(t)\|_{L^p_x}: \ u\in C([0,T); L^p) \mbox{\ solves \eqref{NSa}}\} $$ is attainable at some $\Phi \in L^\infty (0,T; \ \dot B^{-1+6/p}_{p/2,\infty})$.

Related articles: Most relevant | Search more
arXiv:2012.13175 [math.AP] (Published 2020-12-24)
About lifespan and the continuous dependence for the Navier-Stokes equation in $\dot{B}^{\frac{d}{p}-1}_{p,r}$
arXiv:1910.05175 [math.AP] (Published 2019-10-11)
Vorticity, Helicity, Intrinsinc geometry for Navier-Stokes equations
arXiv:2411.13896 [math.AP] (Published 2024-11-21)
A blow up solution of the Navier-Stokes equations with a critical force