arXiv Analytics

Sign in

arXiv:1608.02447 [math.CO]AbstractReferencesReviewsResources

Shifted symmetric functions and multirectangular coordinates of Young diagrams

Per Alexandersson, Valentin Féray

Published 2016-08-08Version 1

In this paper, we study shifted Schur functions $S_\mu^\star$, as well as a new family of shifted symmetric functions $\mathfrak{K}_\mu$ linked to Kostka numbers. We prove that both are polynomials in multi-rectangular coordinates, with nonnegative coefficients when written in terms of falling factorials. We then propose a conjectural generalization to the Jack setting. This conjecture is a lifting of Knop and Sahi's positivity result for usual Jack polynomials and resembles recent conjectures of Lassalle. We prove our conjecture for one-part partitions.

Related articles: Most relevant | Search more
arXiv:math/0009230 [math.CO] (Published 2000-09-26)
The conjecture cr(C_m\times C_n)=(m-2)n is true for all but finitely many n, for each m
arXiv:math/0508537 [math.CO] (Published 2005-08-26)
On a conjecture of Widom
arXiv:math/0610977 [math.CO] (Published 2006-10-31)
New results related to a conjecture of Manickam and Singhi