arXiv:1608.02418 [math.RT]AbstractReferencesReviewsResources
τ-Rigid Modules from Tilted to Cluster-Tilted Algebras
Published 2016-08-08Version 1
We study the module categories of a tilted algebra C and the corresponding cluster-tilted algebra B. In particular, we study which \tau-rigid C-modules are also \tau-rigid B-modules. In the special case where the C-module M is an indecomposable \tau-rigid module or a \tau-tilting module, we prove a necessary and sufficient condition for M to be a \tau-rigid B-module.
Comments: 21 pages. arXiv admin note: substantial text overlap with arXiv:1608.01616. text overlap with arXiv:1410.1732, arXiv:1604.06907 by other authors
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2012.11084 [math.RT] (Published 2020-12-21)
Maximum deconstructibility in module categories
arXiv:2310.14956 [math.RT] (Published 2023-10-23)
Action of $w_0$ on $V^L$: the special case of $\mathfrak{so}(1,n)$
Cherednik algebras for algebraic curves