arXiv:1607.03271 [math.RT]AbstractReferencesReviewsResources
Relative hard Lefschetz for Soergel bimodules
Published 2016-07-12Version 1
We prove the relative hard Lefschetz theorem for Soergel bimodules. It follows that the structure constants of the Kazhdan-Lusztig basis are unimodal. We explain why the relative hard Lefschetz theorem implies that the tensor category associated by Lusztig to any 2-sided cell in a Coxeter group is rigid and pivotal.
Comments: 29 pages, preliminary version
Related articles: Most relevant | Search more
arXiv:1607.03470 [math.RT] (Published 2016-07-12)
Jucys-Murphy operators for Soergel bimodules
arXiv:math/0304176 [math.RT] (Published 2003-04-14)
Structure constants for Hecke and representation rings
arXiv:2207.02459 [math.RT] (Published 2022-07-06)
Evaluation birepresentations of affine type A Soergel bimodules