arXiv Analytics

Sign in

arXiv:1606.06413 [math.AP]AbstractReferencesReviewsResources

Stability of positive solutions to biharmonic equations on Heisenberg group

Gaurav Dwivedi, Jagmohan Tyagi

Published 2016-06-21Version 1

In this note, we establish the existence of a positive solution and its stability to the following problem $$\Delta_{\mathbb{H}^n}^2u=a(\xi)u-f(\xi,u)\text{ in }\Omega, \,\,\, u|_{\partial\Omega} = 0 =\left.\Delta_{\mathbb{H}^n} u\right|_{\partial\Omega},$$ on Heisenberg group.

Comments: 11 Pages
Categories: math.AP
Subjects: 35B35, 35B09, 35J91, 35R03
Related articles: Most relevant | Search more
arXiv:1312.6210 [math.AP] (Published 2013-12-21, updated 2014-03-19)
Some remarks on the qualitative questions for biharmonic equations
arXiv:2205.01993 [math.AP] (Published 2022-05-04)
Horizontally quasiconvex envelope in the Heisenberg group
arXiv:1909.11918 [math.AP] (Published 2019-09-26)
Gradient-type systems on unbounded domains of the Heisenberg group