arXiv:1606.04968 [math.AP]AbstractReferencesReviewsResources
Symmetry and nonexistence of positive solutions for fractional systems
Published 2016-06-15Version 1
This paper is devoted to study the nonexistence results of positive solutions for the following fractional H$\acute{e}$non system \begin{eqnarray*}\left\{ \begin{array}{lll} &(-\triangle)^{\alpha/2}u=|x|^av^p,~~~&x\in R^n, &(-\triangle)^{\alpha/2}v=|x|^bu^q,~~~ &x\in R^n, &u\geq0, v\geq 0, \end{array} \right. \end{eqnarray*} where $0<\alpha<2$, $0<p,q<\infty$, $a$, $b$ $\geq0$, $n\geq2$. Using a direct method of moving planes, we prove non-existence of positive solution in the subcritical case.
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1508.04961 [math.AP] (Published 2015-08-20)
On positive solutions of the $(p,A)$-Laplacian with a potential in Morrey space
arXiv:1305.1003 [math.AP] (Published 2013-05-05)
Qualitative properties of positive solutions of quasilinear equations with Hardy terms
arXiv:1303.7268 [math.AP] (Published 2013-03-28)
Pohozaev-type inequalities and nonexistence results for non $C^2$ solutions of $p(x)$-laplacian equations