arXiv Analytics

Sign in

arXiv:1606.04025 [math.GN]AbstractReferencesReviewsResources

Topological properties of function spaces over ordinal spaces

Saak Gabriyelyan, Jan Grebik, Jerzy Kakol, Lyubomyr Zdomskyy

Published 2016-06-13Version 1

Motivated by the classical Ascoli theorem, a topological space $X$ is said to be an Ascoli space if any compact subset $\mathcal K$ of $C_k(Y)$ is evenly continuous. We study the $k_{\mathbb R}$-property and the Ascoli property of $C_p(\kappa)$ and $C_k(\kappa)$ over ordinal spaces $\kappa=[0,\kappa)$. We prove that $C_p(\kappa)$ is always an Ascoli space, while $C_p(\kappa)$ is a $k_{\mathbb R}$-space iff the cofinality of $\kappa$ is countable. In particular, this provides the first $C_p$-example of an Ascoli space which is not a $k_{\mathbb R}$-space, namely $C_p(\omega_1)$. We show that $C_k(\kappa)$ is Ascoli iff $\mathrm{cf}(\kappa)$ is countable iff $C_k(\kappa)$ is metrizable.

Comments: 5 pages, comments are welcome
Categories: math.GN, math.FA
Subjects: 54C35, 54F05, 46A08, 54E18
Related articles: Most relevant | Search more
arXiv:1606.01013 [math.GN] (Published 2016-06-03)
The Ascoli property for function spaces
arXiv:2012.13800 [math.GN] (Published 2020-12-26)
Function Spaces over Products with Ordinals
arXiv:1207.7004 [math.GN] (Published 2012-07-30)
Injections into Function Spaces over Compacta