arXiv:1606.03124 [cond-mat.dis-nn]AbstractReferencesReviewsResources
Random Matrix Theory of Resonances: an Overview
Published 2016-06-09Version 1
Scattering of electromagnetic waves in billiard-like systems has become a standard experimental tool of studying properties associated with Quantum Chaos. Random Matrix Theory (RMT) describing statistics of eigenfrequencies and associated eigenfunctions remains one of the pillars of theoretical understanding of quantum chaotic systems. In a scattering system coupling to continuum via antennae converts real eigenfrequencies into poles of the scattering matrix in the complex frequency plane and the associated eigenfunctions into decaying resonance states. Understanding statistics of these poles, as well as associated non-orthogonal resonance eigenfunctions within RMT approach is still possible, though much more challenging task.