arXiv Analytics

Sign in

arXiv:1606.01179 [math.CA]AbstractReferencesReviewsResources

An estimate of the second moment of a sampling of the Riemann zeta function on the critical line

Sihun Jo, Minsuk Yang

Published 2016-06-03Version 1

We investigate the second moment of a random sampling $\zeta(1/2+iX_t)$ of the Riemann zeta function on the critical line. Our main result states that if $X_t$ is an increasing random sampling with gamma distribution, then for all sufficiently large $t$, \[\mathbb{E} |\zeta(1/2+iX_t)|^2 = \log t + O(\sqrt{\log t}\log\log t).\]

Comments: 13 pages
Journal: J. Math. Anal. Appl. 415 (2014) 121-134
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:0710.0943 [math.CA] (Published 2007-10-04)
On some properties of Riemann zeta function on critical line
arXiv:1701.03971 [math.CA] (Published 2017-01-14)
Some new inequalities for Generalized Mathieu type series and Riemann zeta functions
arXiv:1705.02256 [math.CA] (Published 2017-05-05)
On some mellin transforms for the Riemann zeta function in the critical strip