arXiv Analytics

Sign in

arXiv:1606.00760 [math.NT]AbstractReferencesReviewsResources

Enumerating submodules invariant under an endomorphism

Tobias Rossmann

Published 2016-06-01Version 1

We study zeta functions enumerating submodules invariant under a given endomorphism of a finitely generated module over the ring of ($S$-)integers of a number field. In particular, we compute explicit formulae involving Dedekind zeta functions and establish meromorphic continuation of these zeta functions to the complex plane. As an application, we show that ideal zeta functions associated with nilpotent Lie algebras of maximal class have abscissa of convergence $2$.

Related articles: Most relevant | Search more
arXiv:1308.5394 [math.NT] (Published 2013-08-25)
Zeta Functions for the Adjoint Action of GL(n) and density of residues of Dedekind zeta functions
arXiv:1611.08693 [math.NT] (Published 2016-11-26)
On The Product of Dedekind zeta functions
arXiv:1601.02672 [math.NT] (Published 2016-01-11)
Extreme residues of Dedekind zeta functions