arXiv:1605.05692 [math.CO]AbstractReferencesReviewsResources
Expected values of parameters associated with the minimum rank of a graph
Tracy Hall, Leslie Hogben, Ryan Martin, Bryan Shader
Published 2016-05-18Version 1
We investigate the expected value of various graph parameters associated with the minimum rank of a graph, including minimum rank/maximum nullity and related Colin de Verdi\`ere-type parameters. Let $G(v,p)$ denote the usual Erd\H{o}s-R\'enyi random graph on $v$ vertices with edge probability $p$. We obtain bounds for the expected value of the random variables $\mr(G(v,p))$, $\M(G(v,p))$, $\nu(G(v,p))$ and $\xi(G(v,p))$, which yield bounds on the average values of these parameters over all labeled graphs of order $v$.
Comments: 17 pages, 2 figures
Journal: Linear Algebra Appl. 433(1) (2010), 101--117
Categories: math.CO
Keywords: expected value, minimum rank/maximum nullity, average values, graph parameters, random graph
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2412.19771 [math.CO] (Published 2024-12-27)
Functionality of Random Graphs
arXiv:1310.5873 [math.CO] (Published 2013-10-22)
Universality of random graphs for graphs of maximum degree two
On a Cohen-Lenstra Heuristic for Jacobians of Random Graphs