arXiv Analytics

Sign in

arXiv:1605.05240 [math.NT]AbstractReferencesReviewsResources

Permutational behavior of reversed Dickson polynomials over finite fields

Kaimin Cheng

Published 2016-05-17Version 1

In this paper, we use the method developed previously by Hong, Qin and Zhao to obtain several results on the permutational behavior of the reversed Dickson polynomial $D_{n,k}(1,x)$ of the $(k+1)$-th kind over the finite field ${\mathbb F}_{q}$. Particularly, we present the explicit evaluation of the first moment $\sum_{a\in {\mathbb F}_{q}}D_{n,k}(1,a)$. Our results extend the known results from the case $0\le k\le 3$ to the general $k\ge 0$ case.

Comments: 16 pages. arXiv admin note: substantial text overlap with arXiv:1604.04557
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1604.04557 [math.NT] (Published 2016-04-15)
Reversed Dickson polynomials of the fourth kind over finite fields
arXiv:1602.04545 [math.NT] (Published 2016-02-15)
Reversed Dickson Polynomials of the Third Kind
arXiv:0708.2130 [math.NT] (Published 2007-08-16, updated 2007-09-16)
On The Solvability of Bilinear Equations in Finite Fields