arXiv Analytics

Sign in

arXiv:1605.03907 [math.CO]AbstractReferencesReviewsResources

A combinatorial problem and numerical semigroups

Aureliano M. Robles-Pérez, José Carlos Rosales

Published 2016-05-12Version 1

Let $a=(a_1,\ldots,a_n)$ and $b=(b_1,\ldots,b_n)$ be two $n$-tuples of positive integers, let $X$ be a set of positive integers, and let $g$ be a positive integer. In this work we show an algorithmic process in order to compute all the sets $C$ of positive integers that fulfill the following conditions: 1) the cardinality of $C$ is equal to $g$; 2) if $x,y\in \mathbb{N} \setminus \{0\}$ and $x+y\in C$, then $C \cap \{x,y\} \neq \emptyset$; 3) if $x \in C$ and $\frac{x-b_i}{a_i} \in \mathbb{N} \setminus \{0\}$ for some $i\in \{1,\ldots,n\}$, then $\frac{x-b_i}{a_i} \in C$; 4) $X \cap C = \emptyset$.

Related articles: Most relevant | Search more
arXiv:0901.1228 [math.CO] (Published 2009-01-09, updated 2009-12-23)
Computing the number of numerical semigroups using generating functions
arXiv:0905.0489 [math.CO] (Published 2009-05-04)
Improved bounds on the number of numerical semigroups of a given genus
arXiv:1010.5042 [math.CO] (Published 2010-10-25, updated 2012-08-12)
On a combinatorial problem of Erdos, Kleitman and Lemke