arXiv Analytics

Sign in

arXiv:1604.02142 [math.DG]AbstractReferencesReviewsResources

Geometric Quantization of the moduli space of the vortex equations on a Riemann surface

Rukmini Dey

Published 2016-04-07Version 1

In this note we quantize the usual symplectic (K\"{a}hler) form on the vortex moduli space by modifying the Quillen metric of the Quillen determinant line bundle.

Comments: The contents of this note is contained in a published paper: Dey, R: Erratum: Geometric prequantization of the moduli space of the vortex equations on a Riemann surface" Journal of Mathematical Phys. 50, 119901 (2009)
Categories: math.DG, math.AG
Related articles: Most relevant | Search more
arXiv:0812.0221 [math.DG] (Published 2008-12-01, updated 2009-10-19)
Singular Hermitian-Einstein monopoles on the product of a circle and a Riemann surface
arXiv:math/0402429 [math.DG] (Published 2004-02-26, updated 2005-09-30)
Rank One Higgs Bundles and Representations of Fundamental Groups of Riemann Surfaces
arXiv:1207.5697 [math.DG] (Published 2012-07-24, updated 2013-04-27)
New proofs of the Torelli theorems for Riemann surfaces