arXiv Analytics

Sign in

arXiv:1604.00863 [math.OC]AbstractReferencesReviewsResources

Stability analysis of Model Predictive Controllers using Mixed Integer Linear Programming

Daniel Simon, Johan Löfberg

Published 2016-04-04Version 1

It is a well known fact that finite time optimal controllers, such as MPC does not necessarily result in closed loop stable systems. Within the MPC community it is common practice to add a final state constraint and/or a final state penalty in order to obtain guaranteed stability. However, for more advanced controller structures it can be difficult to show stability using these techniques. Additionally in some cases the final state constraint set consists of so many inequalities that the complexity of the MPC problem is too big for use in certain fast and time critical applications. In this paper we instead focus on deriving a tool for a-postiori analysis of the closed loop stability for linear systems controlled with MPC controllers. We formulate an optimisation problem that gives a sufficient condition for stability of the closed loop system and we show that the problem can be written as a Mixed Integer Linear Programming Problem (MILP)

Comments: Submitted to IEEE Conference on Decision and Control (CDC) 2016
Categories: math.OC, cs.SY
Related articles: Most relevant | Search more
arXiv:1602.06986 [math.OC] (Published 2016-02-22)
A Convex Approach for Stability Analysis of Coupled PDEs using Lyapunov Functionals
arXiv:2207.09325 [math.OC] (Published 2022-07-19)
Multi-parametric Analysis for Mixed Integer Linear Programming: An Application to Transmission Planning and Congestion Control
arXiv:1603.04178 [math.OC] (Published 2016-03-14)
Stability Analysis and Design of Momentum-based Controllers for Humanoid Robots