arXiv:1604.00006 [astro-ph.GA]AbstractReferencesReviewsResources
Dynamical ejections of massive stars from young star clusters under diverse initial conditions
Published 2016-03-31Version 1
We study the effects of initial conditions of star clusters and their massive star population on dynamical ejections of stars from star clusters up to an age of 3 Myr, particularly focusing on massive systems, using a large set of direct N-body calculations for moderately massive star clusters (Mecl=$10^{3.5}$ Msun). We vary the initial conditions of the calculations such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars remaining in the cluster becomes slightly steeper (top-light) than the IMF. The top-light mass functions of stars in 3 Myr old clusters in our N-body models are in good agreement with the mean mass function of young intermediate mass clusters in M31 as found by Weisz et al.. We show that the multiplicity fraction of the ejected massive stars can be as high as 60%, that massive high-order multiple systems can be dynamically ejected, and that high-order multiples become common especially in the cluster. Furthermore, binary populations of the ejected massive systems are discussed. When a large survey of the kinematics of the field massive stars becomes available, e.g through Gaia, our results may be used to constrain the birth configuration of massive stars in star clusters. (Abridged)