arXiv Analytics

Sign in

arXiv:1603.08989 [math.OC]AbstractReferencesReviewsResources

An a posteriori error analysis for an optimal control problem involving the fractional Laplacian

Harbir Antil, Enrique Otarola

Published 2016-03-29Version 1

In a previous work, we introduced a discretization scheme for a constrained optimal control problem involving the fractional Laplacian. For such a control problem, we derived optimal a priori error estimates that demand the convexity of the domain and some compatibility conditions on the data. To relax such restrictions, in this paper, we introduce and analyze an efficient and, under certain assumptions, reliable a posteriori error estimator. We realize the fractional Laplacian as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi--infinite cylinder in one more spatial dimension. This extra dimension further motivates the design of an posteriori error indicator. The latter is defined as the sum of three contributions, which come from the discretization of the state and adjoint equations and the control variable. The indicator for the state and adjoint equations relies on an anisotropic error estimator in Muckenhoupt weighted Sobolev spaces. The analysis is valid in any dimension. On the basis of the devised a posteriori error estimator, we design a simple adaptive strategy that exhibits optimal experimental rates of convergence.

Related articles: Most relevant | Search more
arXiv:1203.2360 [math.OC] (Published 2012-03-11)
Parareal in time intermediate targets methods for optimal control problem
arXiv:1802.01224 [math.OC] (Published 2018-02-05)
Variational Principles for Optimal Control of Left-Invariant Multi-Agent Systems with Asymmetric Formation Constraints
arXiv:1512.00953 [math.OC] (Published 2015-12-03)
Necessary optimality conditions for optimal control problems with nonsmooth mixed state and control constraints