arXiv Analytics

Sign in

arXiv:1603.08882 [astro-ph.HE]AbstractReferencesReviewsResources

Cold Fronts: Probes of Plasma Astrophysics in Galaxy Clusters

John ZuHone, Elke Roediger

Published 2016-03-29Version 1

The most massive baryonic component of galaxy clusters is the "intracluster medium" (ICM), a diffuse, hot, weakly magnetized plasma that is most easily observed in the X-ray band. Despite being observed for decades, the macroscopic transport properties of the ICM are still not well-constrained. A path to determine macroscopic ICM properties opened up with the discovery of "cold fronts". These were observed as sharp discontinuities in surface brightness and temperature in the ICM, with the property that the brighter (and denser) side of the discontinuity is the colder one. The high spatial resolution of the Chandra X-ray Observatory revealed two puzzles about the cold fronts. First, they should be subject to Kelvin-Helmholtz instabilites, yet in many cases they appear relatively smooth and undisturbed. Second, the width of the interface between the two gas phases is typically narrower than the mean free path of the particles in the plasma, indicating negligible thermal conduction. From the time of their discovery, it was realized that these special characteristics of cold fronts may be used to probe the physical properties of the cluster plasma. In this review, we will discuss the recent simulations of cold front formation and evolution in galaxy clusters, with a focus on those which have attempted to use these features to constrain the physics of the ICM. In particular, we will focus on the effects of magnetic fields, viscosity, and thermal conductivity on the stability properties and long-term evolution of cold fronts. We conclude with a discussion on what important questions remain unanswered, and the future role of simulations and the next generation of X-ray observatories.

Comments: 44 pages, 27 figures, submitted to the Journal of Plasma Physics
Categories: astro-ph.HE, astro-ph.GA
Related articles: Most relevant | Search more
arXiv:2108.10036 [astro-ph.HE] (Published 2021-08-23)
Discovery of Galaxy Clusters with Chandra Discovery of Galaxy Clusters and a Head-Tail Radio Galaxy in the Direction of Globular Cluster NGC 6752
arXiv:1705.02341 [astro-ph.HE] (Published 2017-05-05)
On the connection between turbulent motions and particle acceleration in galaxy clusters
D. Eckert et al.
arXiv:1811.02101 [astro-ph.HE] (Published 2018-11-06)
X-ray spectroscopy of galaxy clusters: beyond the CIE modeling