arXiv Analytics

Sign in

arXiv:1603.03419 [astro-ph.SR]AbstractReferencesReviewsResources

Stellar Coronal Response to Differential Rotation and Flux Emergence

G. P. S. Gibb, D. H. Mackay, M. M. Jardine, A. R. Yeates

Published 2016-03-10Version 1

We perform a numerical parameter study to determine what effect varying differential rotation and flux emergence has on a star's non-potential coronal magnetic field. In particular we consider the effects on the star's surface magnetic flux, open magnetic flux, mean azimuthal field strength, coronal free magnetic energy, coronal heating and flux rope eruptions. To do this, we apply a magnetic flux transport model to describe the photospheric evolution, and couple this to the non-potential coronal evolution using a magnetofrictional technique. A flux emergence model is applied to add new magnetic flux onto the photosphere and into the corona. The parameters of this flux emergence model are derived from the solar flux emergence profile, however the rate of emergence can be increased to represent higher flux emergence rates than the Sun's. Overall we find that flux emergence has a greater effect on the non-potential coronal properties compared to differential rotation, with all the aforementioned properties increasing with increasing flux emergence rate. Although differential rotation has a lesser effect on the overall coronal properties compared to flux emergence, varying differential rotation does alter the coronal structure. As the differential rotation rate increases, the corona becomes more open, and more non-potential.

Comments: 15 pages, 18 figures
Journal: Monthly Notices of the Royal Astronomical Society, Volume 456, Issue 4, p.3624-3637, 03/2016
Categories: astro-ph.SR
Related articles: Most relevant | Search more
arXiv:1702.02213 [astro-ph.SR] (Published 2017-02-07)
Activity and rotation of Kepler-17
arXiv:0902.4469 [astro-ph.SR] (Published 2009-02-25)
The Differential Rotation of FU Ori
arXiv:2407.13484 [astro-ph.SR] (Published 2024-07-18)
A common law for the differential rotation of planets and stars