arXiv:1603.00618 [math.AG]AbstractReferencesReviewsResources
Okounkov bodies and Zariski decompositions on surfaces
Sung Rak Choi, Jinhyung Park, Joonyeong Won
Published 2016-03-02Version 1
The purpose of this paper is to investigate the close relation between Okounkov bodies and Zariski decompositions of pseudoeffective divisors on smooth projective surfaces. Firstly, we completely determine the limiting Okounkov bodies on such surfaces, and give applications to Nakayama constants and Seshadri constants. Secondly, we study how the shapes of Okounkov bodies change as we vary the divisors in the big cone.
Comments: 16 pages
Categories: math.AG
Related articles: Most relevant | Search more
arXiv:2007.06519 [math.AG] (Published 2020-07-13)
An integral version of Zariski decompositions on normal surfaces
arXiv:1002.2024 [math.AG] (Published 2010-02-10)
Explicit computations of Zariski decompositions on P_Z^1
arXiv:0712.1576 [math.AG] (Published 2007-12-10)
A simple proof for the existence of Zariski decompositions on surfaces